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Abstract

An electron interferometer was designed and fabricated via a normal metal (supercon-

ductor)/insulator/ferromagnet non-local lateral spin valve with a ring-shaped normal

metal/insulator spacer, and spin current interference was observed. At 4.2 K, a very

high spin signal of 200 mΩ was found in a device with 2 µm injector-detector dis-

tance and magnetic field swept parallel to the plane. With a perpendicular magnetic

field sweep, a Hanle effect measurement showed both spin precession and h/e oscil-

lation. Because of the non-adiabatic nature of the precessing spins at low fields as

they traverse the normal metal ring, this is an experimental observation of Aharonov-

Anandan’s non-adiabatic geometric phase.

In addition, our observation of identical spin resistance for normal and supercon-

ducting Aluminum is inconsistent with theoretical predictions based on the quasi-

particle picture. In this designed sample, at the injector region, it is actually a

superconductor/ferromagnet/superconductor lateral Josephson junction. Such a lat-

eral Josephson junction convert spin singlet Cooper pairs from Aluminum to the long

range triplet components in ferromagnet with projection of Sz = ±1. Such long

range triplet components could diffuse a long distance in ferromagnet bar which is

shorter than 3µm. The spin current results in superconducting Aluminum not only

suggested the singlet-triplet conversion in ferromagnet, but may also suggest a new

phenomenon, that is the long range triplet correlation in ferromagnet may also re-

versely spread out into type I superconductor and exist for a short period of time in

the superconductor and finally convert to singlet correlation due to exchange inter-

action and spin-orbital coupling. Such an unstable triplet correlation in Aluminum

v
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could be detected in the non-local geometry. Although additional experimental work

is needed to further confirm this supposition, our results might be the direct observa-

tion of superconducting spin current which was under experimental pursuit recently.

The experimental results may also suggest a new research area, that is triplet-singlet

conversion in type I superconductor.
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Chapter 1

Introduction: Spintronics

Spintronics is to utilize and manipulate the spin degree of freedom of electron in

solid state devices. The fundamental research of spintronics includes spin genera-

tion, detection and spin transport in different electronic materials such as metal,

semiconductor and superconductor[96, 39, 14]. To control spin, one either control the

population and phase of the spin with ensemble of particles, or coherently manipulate

a single spin or several spin system.

Spin generation could be realized through different ways of creating non-equilibrium

spin population. One is optical way which uses circularly polarized photons to trans-

fer the angular momenta to electrons[52]. Another way is electrical spin injection

from a ferromagnetic material. Spin dependent density of states (DOS) for ferromag-

netic metal (FM) and normal metal (NM) is shown in figure 1.1. Near Fermi level,

where most transport property depends on density of states, the asymmetry of spin

up and spin down allow FM to generate, manipulate and detect spin signal. Once

spin polarized electric current is injected from FM to NM, the non-equilibrium spin

accumulates in NM. Then spin starts to relax and bring the non-equilibrium spin

accumulation back equilibrium. Currently several spin relaxation mechanisms are

proposed, Elliott-Yafet mechanism, D’yakonov-Perel Mechanism Bir-Aronov-Pikus

mechanism and Hyperfine-interaction mechanism[30, 93, 28, 18, 29]. Most mecha-

nisms involve spin-orbit coupling in combination with momentum scattering to serve

as the source of spin randomization. Spin detection mainly utilize the sensing of

change in the signals originated from spin non-equilibrium in a system.

1



www.manaraa.com

Figure 1.1 Density of States for spin up and spin down in NM and FM.

1.1 Giant Magnetoresistance and Tunneling Magnetoresistance

Currently, one of the most successful application of spintronics is in the hard disk

drive for large volume information storage in modern information technology, in the

form of giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR)[24,

96, 31, 55, 83]. In 2007, Physics Nobel Prize was awarded to Albert Fert and Peter

Grunberg for their discovery of GMR, which is a quantum mechanical magnetoresis-

tance observed in multilayers composed of two FM layers and a NM layer between

them. One is current in plane (CIP) in which the current flows along the superlat-

tice layers. Another is current perpendicular to plane (CPP) in which the current

passed perpendicular to the layers. The GMR value of CPP geometry is more than

twice of that in CIP geometry. It is also easier to analyze the physics mechanism

theoretically in CPP geometry which relates to the physics in magnetic tunnel junc-

tion. However, CIP geometry is used in most of the GMR geometry as it is easier

to realize. Figure 1.2(a) shows the high giant magnetoresistance of about 80% from

Fe/Cr superlattices prepared by molecular beam epitaxy [9]. Figure 1.2(b) shows the

schematic diagram of the mechanism of CPP GMR. In parallel ferromagnets configu-

2
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Figure 1.2 (a) GMR of Fe/Cr superlattices for CPP geometry [9], figure from
Wikipedia. (b) Schematic diagram of CPP-GMR in FM/NM/FM multilayer[24]. If
electron spin magnetic moment is anti-parallel with magnetization of a FM layer, it
experiences larger resistance Rlarge; if spin magnetic moment is parallel with a FM
layer, it experiences smaller resistance Rsmall. The two resistance stages for AP and
P FM configurations are expressed as Eq. 1.1.

ration, electrons with one spin direction (parallel to the magnetization direction) can

flow easily through both magnetic layers, so the resistance is lower. While in anti-

parallel ferromagnets configuration, both spin up and spin down electrons experience

same magnetic scattering, therefore the resistance is higher [31]. We can understand

this by using resistance circuit representation for two magnetic configurations.

RAP = Rlarge +Rsmall

2 , RP = RlargeRsmall

Rlarge +Rsmall

(1.1)

the The difference in resistance for parallel and anti-parallel configurations will

be converted into proper digital voltage signals which can be used for information

storage.

A step further is the Tunneling Magnetoresistance (TMR) observed in magnetic

tunnel junction (MTJ) [55, 68, 69]. MTJ consists of two FM layers separated by a thin

insulator which serves as tunnel junction. The insulator is often a few nanometers,

3



www.manaraa.com

Figure 1.3 Two dimensional write selection with MRAM [4].

such that electrons can tunnel from one ferromagnet to the other. Early works used

amorphous aluminum oxide as insulator and found relative resistance change Rap−Rp

Rp

of 18% with iron FM layers and 11.8% with CoFe/Co FM layers at room temperature

[68, 69]. The TMR value was enhanced a lot with the use of crystalline magnesium

oxide (MgO) as tunnel barrier. Fe/MgO/Fe(CoFe) tunnel junctions show a TMR

value of more than 200% at room temperature [95, 72, 21].

Even higher TMR value of 604% at 300 K and 1100% at 4.2 K were found in

CoFeB/MgO/CoFeB junctions [48].

The current application of TMR is the read head of hard disk drive (HDD) in

the information storage. Another application of MTJ is in magnetoresistive random

access memory (MRAM). The proponents of MRAM believe that MRAM will finally

become a kind of universal memory (as shown in figure 1.3)which can combine flash

RAM and dynamic RAM which are existing memory technologies [4].

1.2 Non-local Spin Valve

Non-local spin valve (NLSV) is generally considered as an effective way to generate

spin currents which only carry spin angular momenta, in contrary to the case in GMR,

4
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Figure 1.4 Schematic diagram of Johnson and Silsbee’s first non-local spin
injection and detection experiment [53].

.

TMR or MRAM, in which it is the spin polarized currents that carry both charges

and spins [31, 24]. In NLSV spin and charge currents can be separated. In metal

based NLSV, when spin polarized charge current is injected from FM into NM, non-

equilibrium spin population is accumulated at the vicinity of FM/NM interface or

FM/I/NM tunnel junction. Then the accumulated spin can diffuse to both directions

in NM. In the direction where there is no charge flow, pure spin current forms. Such

an idea of spin injection was first proposed theoretically in 1976 to generate non-

equilibrium spin population in NM [18]. In experiment, Johnson and Silsbee first

realized the non-local spin injection in 1985 in the micro scale sample which composed

of Aluminum bar and two ferromagnetic bars [53]. The geometry of Johnson and

Silsbee’s experiment is shown in figure 1.4.

5
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At Johnson’s time, due to the lack of nanoscale fabrication technique, two FM

electrodes distance is as large as 50 µm, therefore only a very small spin current signal

of about 50 pV was detected. in 2001, the nano-scale Py/Cu/Py NLSV was fabricated

by Jedema et al. with Py (Ni80Fe20) electrodes spacing of 250 nm as show in figure

1.5. Non-local spin signal was enhanced to 1.5 mΩ at 4.2 K and 0.4 mΩ at room

temperature [49]. After Jedema et al.’s following work of Hanle spin precession in

Al/Al2O3/Co NLSV in 2002 [50], intensive study started to concentrate on NLSV as

spintronic device because it is an effective tool to get spin diffusion length in different

materials. Typical study on NLSV include metal based, semiconductor based and

superconductor based devices.

For metal based NLSV, most work were concentrated on detection of spin diffu-

sion length for different materials and ways to promote spin diffusion length such as

the inclusion of MgO tunnel barrier. Otani’s group also showed that large spin accu-

mulation with spin diffusion length of 700 nm for Ag and 400 nm for Cu in Py/Ag/Py

and Py/Cu/Py NLSV [37, 57]. In addition, Otani’s group also found the non-local

spin signal in Py/MgO/Ag NLSV can be enhanced 100 fold, up to 100 mΩ at 10 K,

with MgO serves as tunnel barrier [33].

However, unlike Al, Ag, Cu and Mg, some heavy metal such as Pt, which has

strong spin-orbit coupling, does not show spin transport over a long distance. In

order to quantitatively analyze the spin transport property, spin relaxation time and

the corresponding spin diffusion length are measured in NLSV with parallel magnetic

field and perpendicular magnetic field [46]. By fitting the exponential decay of non-

local spin signal with two FMs distances with parallel magnetic field applied, or by

fitting the spin precession Hanle effect, one can extract the longitudinal spin diffusion

length and transverse spin diffusion length [33].

Once non-equilibrium spin population is generated from direct spin injection in

the NLSV, pin relaxation in NM is the process that spin equilibrium is reached. In

6
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Figure 1.5 Schematic diagram of Jedema et al.’s nano-scale Al/Al2O3/Co NLSV
[50].

.

normal metal, the spin relaxation time is often of the order of nanosecond which is

relatively long to use spin as information carrier. In isotropic metals, the longitudinal

spin relaxation time often equals to transverse spin relaxation time [33, 96].

It is generally believed that Elliott-Yafet mechanism is suitable for most simple

metals [96]. Elliott first proposed theory of conduction electron spin relaxation [30].

In his theory, spins relax through ordinary momentum scattering (impurities at low

temperature or phonos at high temperature) with spin-orbit coupling induced by

7
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lattice ions. The spin-orbit interaction is expressed as

VSO = ~
4m2c2∇VSC × ~̂p · ~̂σ, (1.2)

where m is the electron mass, VSC the spin dependent scalar potential, ~̂p ≡ −i~∇

the linear momentum operator, ~̂σ the Pauli matrices. By considering time-reversal

symmetry and space reversal symmetry, Elliot got the two Bloch states for spin up

|↑〉 and spin down |↓〉 electrons with band index n and lattice momentum ~k,

Ψ~kn↑(~r) = [a~kn(~r) |↑〉+ b~kn(~r) |↓〉]ei~k·~r, (1.3)

Ψ~kn↓(~r) = [a?−~kn(~r) |↓〉 − b?−~kn(~r) |↑〉]ei~k·~r, (1.4)

where a and b are the complex lattice-periodic coeffecients, ~r the radius vector. Con-

sidering the fact that |a| is close to 1, while |b| � 1 in most cases, we can also call

Ψ~kn↑ and Ψ~kn↓ spin up and spin down states.

To understand the spin relaxation process, perturbation method is used. Con-

sidering a band structure without spin-orbit coupling, the addition of VSO, which is

periodic in the lattice, couples electrons with opposite spins which have the identi-

cal ~k while different n. The distance between bands is normally a lot larger than

spin-orbit coupling, which is treated as a small perturbation. Therefore, we have

|b| ≈ λSO/∆E � 1, (1.5)

where ∆E is the nearest bands distance for quantum states in the bands, λSO the

matrix element amplitude of VSO. Thus, Elliott got the conclusion that spin-orbit

coupling, in combination with momentum scattering, mixes the spin-up and spin-

down states and results in spin relaxation. At low temperature, momentum scattering

is originated from scattering of impurity such as boundaries and defects. At high

temperature T, momentum scattering is mainly caused by phonons. The spin-orbit

interaction, which is modified by phonons, can directly couple spin down and spin up

states [93].

8
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Spin-orbit coupling is generally believed to be proportional the the forth power of

atomic number [78].

That’s why in experiment, the spin relaxation time in heavy metals, such as Au,

Pt, is shorter than light metals. However, as we see in eq. 1.5 the electronic structure

also influence spin relaxation [46].

Another origin of spin relaxation in NLSV was found to be from surface spin

scattering of nanowires. Idzuchi et al. found an MgO capping layer on Ag nanowires

can effectively suppress surface scattering induced spin flip events in Py/Ag non-local

lateral spin valve. With all the origins of spin relaxation included, the spin relaxation

time could be expressed as [45]

1
τsf

= 1
τ phsf

+ 1
τ impsf

+ 1
τ surfsf

, (1.6)

where τ phsf , τ
imp
sf and τ surfsf are the phonon, impurity and surface induced spin relax-

ation time. The possible explanation of surface spin relaxation is dominated spin-orbit

interaction [65, 1]. The surface spin flip scattering probability is of the order of mag-

nitude of e2Z/~c, where Z is the atomic number. The MgO capping layer reduces

the formation of AgOx layer on the surface of the nanowire, therefore reduces the

effective Z by introducing Mg which has much smaller Z than Ag. Thus the surface

scattering is reduced [45].

1.3 Drift-diffusion Model for Non-local Spin Valve

The drift-diffusion model of spin transport in disordered systems is a classical model

based on Drude’s theory of electrical conduction. Drude’s theory used the kinetic the-

ory of gases on a metal by assuming a gas of electrons in the metal. Although more

serious theory of conduction electrons should be based on quantum theory, Drude’s

model is still of immense value. Drude’s theory is based on several fundamental

assumptions: 1, the independent electron approximation and free electron approxi-
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mation; 2, collisions are instantaneous events that abruptly change electron velocity

by assuming there is some scattering mechanism no matter what it might be; 3, an

electron experiences a collision with a probability per unit time 1/τ ; 4, electrons can

achieve thermal equilibrium with the environment only by collisions [8].

Consider an electron undergoing random walk in a one dimensional disordered

system, the electron mean free path is l. The electron move with velocity of v before

change direction by scattering. The time of flight is τ = l/v. With the applied

electric field E, which is small enough (∆v = eEτ/m� v) not to significantly alter

v, a biased random walk forms. Therefore the average velocity of the electron is given

by

v̇av = −eE
m
− vav

τ
. (1.7)

In steady state, the average velocity is defined as drift velocity vd by letting v̇av = 0,

vd = −vτav
τ
. (1.8)

Typically in metal, vd is of the order of 1 cm/s while v ≈ 106 m/s. The electron

flow correspondingly leads to change of density n(x, t) at position x and time t. Where

n(x, t) satisfies the normalization condition at all times as

N0 =
∫ ∞
−∞

n(x, t)dx, (1.9)

where it is reasonably assumed that N0 electrons can not be either created or de-

stroyed.

By analyzing the diffusive random walk, the drift velocity and change of density

is related by the drift-diffusion differential equation

∂n

∂t
= D

∂2n

∂x2 − vd
∂n

∂x
, (1.10)

where D = l2/2τ = v2τ/2 is diffusion coefficient. Usually for the metal at room

temperature, τ is of the order of 10−14 s. D is of the order of 10−2 m2s−1.
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Suppose a delta-like initial distribution of n(x, 0) = N0δ(x), at a later time t, the

center moves at drift velocity vd under the influence of electric field:

vd = −eτ
m
E, (1.11)

where µ = eτ/m is defined as electron mobility. In metal, the mobility is often of the

order of 10−3 m2/Vs.

While due to diffusion, the probability distribution broadens proportional to
√
t

as

n(x, t) = N0√
4πDt

e−x
2/4Dt. (1.12)

The drift-diffusion equation can now be rewritten as

∂n

∂t
+ ∂

∂x
[−µnE −D∂n

∂x
] = 0, (1.13)

in which we can introduce electron current as

J = −µnE −D∂n
∂x
, (1.14)

where the first term describes the drift current and the second term the diffusion

current. The corresponding electrical current is given as

j = −eJ = σE + eD
∂n

∂x
, (1.15)

in which σ = eµn is the conductivity. The corresponding resistivity is ρ = 1/σ.

With the definition of the electron (particle) current J , eq. 1.13 can be expressed

as
∂n

∂t
+ ∂J

∂x
= 0, (1.16)

which is just the continuity equation describing the conservation of particles.

When electron spin is put into consideration, the total electron density n and the

electron density for spin up and spin down, n↑ and n↓, satisfy

n = n↑ + n↓, (1.17)
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the spin density is given by

s = n↑ − n↓. (1.18)

Different from particle drift-diffusion, there is the possibility w for spins to be

flipped in the time τ . So we can get the spin flip rate w/τ . The typical spin flip

probability after relaxation time τ is 10−6 to 10−3, which means an electron gets its

spin flipped after thousands of scatterings. Similar to eq. 1.10, the drift-diffusion

equations for n↑ and n↓ is

∂n↑
∂t

= D
∂2n↑
∂x2 − vd

∂n↑
∂x
− w(n↑ − n↓), (1.19)

∂n↓
∂t

= D
∂2n↓
∂x2 − vd

∂n↓
∂x
− w(n↓ − n↑). (1.20)

Adding the above equations recovers eq. 1.10. However, subtracting eq. 1.20 from

eq. 1.19 yields drift-diffusion equation for s:

∂s

∂t
= D

∂2s

∂x2 − vd
∂s

∂x
− s

τs
, (1.21)

where 1/τs = 2w/τ gives the spin relaxation. τs is spin relaxation time. By substi-

tuting the drift velocity with mobility, we can rewrite the spin version of continuity

equation
∂s

∂t
+ ∂

∂x
(−µEs−D∂s

∂x
) = − s

τs
, (1.22)

from which we get the spin particle current

Js = −µEs−D∂s

∂x
. (1.23)

The spin (charge) current can be written as

js = −eJs = σsE + eD
∂s

∂x
, (1.24)

where σs = eµs is the spin conductivity.

For the case of E = 0, the electric field which induce spin drift is neglected. Eq.

1.22 can be solved for different boundary and initial conditions. For a delta function
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like initial spin density, which means at t = 0, s(x, 0) = S0δ(x), we can solve spin

diffusion equation
∂s

∂t
= D

∂2s

∂x2 −
s

τs
. (1.25)

The solution is

s(x, t) = S0√
4πDt

e−x
2/4Dte−t/τs , (1.26)

in which the two exponential terms give spin diffusion and spin relaxation. The

spatial spin distribution deviation at time t = τs gives the spin diffusion length

ls =
√
Dτs = σ/

√
2. (1.27)

For the case of steady state, i. e. ∂s/∂ t=0, we have

D
∂2s

∂x2 = s

τs
, (1.28)

with spin source at x = 0, s(0) = s0, s(∞) = 0, the solution to eq. 1.28 is

s(x) = s0e
−x/
√
Dτs = s0e

−x/ls , (1.29)

which means the spin can spread ls from the spin source at x = 0.

For case of steady spin current at x = 0, i. e. Js(0) = −D∂s/∂x|x=0 = Js0, the

solution of eq. 1.28 is

s(x) = Js0
ls
D
e−x/ls . (1.30)

At x = 0, the spin is

s(0) = Js0
ls
D
. (1.31)

1.4 Spin dynamics: Hanle effect

The drift-diffusion model can also be generalized for spin dynamics. With the exis-

tence of external magnetic field, the spin will precess as

ds
dt = s× ωL, (1.32)
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where ωL = γB is directed Larmor frequency, γ = 2µB/~ the gyromagnetic ratio,

µB the Bohr magneton. with random walk put into consideration, the spin dynamics

drift-diffusion equation is

∂s
∂t

= s× ωL +D∇2s + µE∇s− s
τs
. (1.33)

The continuity equation with spin dynamics is

∂s
∂t
−∇[µEs−D∇s] = s× ωL −

s
τ0
, (1.34)

in which we have the generalized spin current

Js = −µEs−D∇s. (1.35)

Then the spin charge current becomes

js = −eJs = eµEs + eD∇s. (1.36)

Correspondingly the continuity equation becomes

∂s
∂t

+∇Js = s× ωL −
s
τs
. (1.37)

The Hanle effect describes the spin precession in NM with magnetic field ap-

plied perpendicular to the initially injected spin from injector FM in the structure of

NLSV. The detector at some distance from the injector detects the average spin. Due

to the spin precession, coherent spin precession angle could be identified with increas-

ing perpendicular magnetic field. While due to the diffusive transport, a continuous

decrease of spin accumulation could also be identified. From injector to detector, dif-

ferent electrons experience different transit time, the corresponding precession angles

are also different.

The analytical expression of Hanle effect can be derived for diffusive pure spin

current based from transit-time distribution model. For a single spin, the probability
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on time t for the spin to transit a distance L from injector to detector with random

walk is

P (t) = 1√
4πDt

e−L
2/4Dt. (1.38)

Statistically for all the spins, P (t) is proportional to the number of electrons, injected

at x = 0 from injector, arriving at the detector at x = L after diffusion time t. The

spin relaxation contributes another exponential term exp(−t/τs) to the number of

spins arriving at x = L. With the Larmor precession which contributes the term

cos(ωLt), the statistical average of all the spins’ contribution to the non-local spin

valve signal equals to the time integral of P (t)exp(−τs/t)cos(ωLt),

V (B⊥)/I ∝
∫ ∞

0
P (t)cos(ωLt)e−t/τsdt. (1.39)

The coefficient could be determined by comparing non-local spin signal at no spin

precession, i. e. B⊥ = 0, with the spin signal from parallel magnetic field applied

[50, 96] as

V (B⊥)/I = 1
e2N(εF )A

∫ ∞
0

P (t)cos(ωLt)e−t/τsdt, (1.40)

where N(εF ) is density of states at Fermi energy.

Therefore, perpendicular magnetic field can control coherent spin precession in

NLSV. Some key parameters such as spin diffusion length, spin polarization and the

transit time for π/2 and π precession can be derived from fitting the measured spin

Hanle curve [96, 50].

1.5 Motivation and Thesis Outline

For the past decade, most work related to NLSV concentrate on the detection of

spin diffusion length of different materials in normal metal, semiconductor and su-

perconductor [96, 36, 50, 84, 33, 38, 64, 26, 39]. In this work, for the first time,

we designed and fabricated a FM(Co, Py)/MgO/Al NLSV with a ring spacer. In

such a geometry, we observe the Aharonov-Bohm interference effect and Hanle effect
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together with precessing spin current or spin polarized electric current for the first

time. By comparing the spin precession period and spin transit time in the ring

from Hanle effect, the adiabaticity of quantum transport can be analyzed. Therefore,

the our observation can also be understood as the observation of Aharonov-Anandan

non-adiabatic geometric phase.

In addition, Aluminum is superconductor below TC , our designed NLSV interfer-

ometer also a tool for the research of spin transport in superconductor. It is also

interesting to observe the interference effect in superconducting state aluminum ring

with non-local spin injection.

The NLSV is designed such that, in the injection region, it is an S/F/S lateral

Josephson junction to generate long range triplet components in the FM bar. It is in-

teresting to see whether such a triplet correlation can spread out into superconductor

and be detected in non-local manner, i. e. the direct observation of superconduct-

ing spin current. It is also very interesting to observe the interference effect with

superconducting spin current.

In Chapter 2, I will review the Aharonov-Bohm phase, Berry’s adiabatic geometric

phase and Aharonov-Anandan’s non-adiabatic geometric phase. Their relationship

will also be discussed. Some experimental observation of either adiabatic or non-

adiabatic geometric phase will also be reviewed.

In Chapter 3, I will review the theories about phase coherent transport in the

disordered mesoscopic conductor. Weak localization and AAS oscillation will also be

discussed as they appeared in our measured result.

In Chapter 4, I will discuss the sample fabrication of NLSV interferometer and

measurement.

In Chapter 5, the measured result on the NLSV interferometer will be discussed.

Injector-detector Distance dependence of spin resistance and Hanle effect measure-

ment are fitted to the theoretical model. Spin diffusion length is distracted from the
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curve fitting. h/e oscillation was found on the non-local Hanle effect curve. For the

local magnetoresistance measurement with spin polarized current, both h/e and h/2e

were found.

In Chapter 6, the measurement of spin resistance in superconducting state Alu-

minum in the NLSV interferometer is analyzed. Spin resistance is identical in normal

and superconducting states, which disagrees with theoretical prediction based on

quasiparticle picture. Considering in the injector region it is an S/F/S Josephson

junction which can generate triplet supercurrent in FM bar, we suggested that, the

triplet correlation in FM can also spread out into the type I superconductor like Al.
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Chapter 2

Geometric Phase

In this chapter, I will review the Aharonov-Bohm phase, Berry phase and Aharonov-

Anandan non-adiabatic geometric phase.

2.1 Aharonov-Bohm Phase

In classical mechanics, the motion of a particle is driven by a force on it, which

obeys Newton’s second law. Such forces, if we try to find out the origin, come from

gravitational field or electro-magnetic field. The electric and magnetic fields are

described in the from of Maxwell equations in the vacuum as

∇ · E = ρ

ε
(2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇×B = µ0J + µ0ε0
∂E
∂t

(2.4)

For a charged particle, the force applied on it is Lorentz force

F = e(E + v×B). (2.5)

In classical electromagnetic theory, together with boundary conditions, the above

equations can explain electromagnetic phenomena. Two more fundamental quantities

which are directly related to the charges and current sources of ρ0 and J0 are scalar
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potential φ and vector potential A. Once φ and A are determined from sources, E

and B fields can be easily derived as

B = ∇×A (2.6)

E = −∇φ− ∂A
∂t
. (2.7)

At early time, it is generally believed that scalar potential and vector potential

are useful mathematical tools which simplify the description of electromagnetic fields

from six components to four components. It is initially considered they have no

physical significance.

In 1959, Yakir Aharonov and David Bohm proposed a thought experiment and

predicted that, for a charged particle, in the region where there is no field which acts

any forces on this particle, the vector potential still affects this charged particle, in

the form of its quantum phase. As shown in figure 2.1, a magnetic flux of

ΦB = πr2ẑ ·B = πr2Bz = 2πrφ̂ ·A (2.8)

exists in the center of the ring but not on the ring itselt. An electron beam split

into two beams at the left of the ring. Two beams pass through two arms of the ring

where no magnetic field B exists but only vector potential A exists. So there’s no

actual electromagnetic force originated from the flux ΦB acting on the two electron

beams. The quantum wave function phase difference from up and bottom arms is[( e
~
) ∫ xN

x1
A · ds

]
top

−
[( e

~
) ∫ xN

x1
A · ds

]
bottom

=
( e
~
) ∮

A · ds =
( e
~
)
ΦB. (2.9)

Such a phase difference could be detected by the interference effect of two electron

beams by changing the magnetic field Bz and the corresponding magnetic flux Φ in

the ring. In other words, while changing Bz, the probability of observing the particle

at the right of the ring will show a sinusoidal change as

( e
~
)
ΦB = 2π e

h
ΦB = 2π

(ΦB

Φ0

)
= 2π

(πr2Bz

Φ0

)
, (2.10)
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Figure 2.1 Schematic diagram of interference effect proposed by Y. Aharonov and
D. Bohm. The radius of the ring is r.

where Φ0 = h/e.

Since Y. Aharonov and D. Bohm proposed the AB effect, the h/e interference

have been experimentally observed in different physical systems. Early experiment

was performed in vacuum in a modified scanning electron microscope where the elec-

tron beam is generated and detected. The apparatus of electrostatic biprism was

introduced to separate an electron beam into two, such that the magnetic flux, origi-

nated from an 1 µm diameter and 0.5 mm long iron whisker, could be applied between

two beams as shown in figure 2.2 [22].

Due to the high voltage applied in the electron microscope to accelerate the elec-

trons to form electron beams, the De Broglie wavelength of the electron is to order

of 1 nm, which is much smaller than the typical size of apparatus which is to the

order of several micrometer. By examining the interference pattern, The AB effect
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Figure 2.2 Schematic diagram of biprism type Aharonov-Bohm interferometer
from [22]. s is electron source, o is observing plane, e and f is biprism, a and a′ are
confined and extended field regions.

was observed. A similar experiment with more complex apparatus was performed

later with consistent result [86].

The early experiments were performed in the vacuum such that the electron wave

function can maintain its phase coherence naturally without any scattering. However

in the metal, it was initially thought that AB effect could not be observed because of

scattering in the electron transport. Until in the 1980s, with the development of low

temperature technique and electron beam lighthography, the electrical measurement

of sub-micro sized sample at extremely low temperature of milliKelvin level could be

realized. The AB effect was observed in Au metal ring with diameter smaller than 1

µm at 10 mK [91]. The magnetoresistance oscillation with period corresponding to

flux h/e was clearly observed in a 784 nm diameter ring as shown in figure 2.3 from

[91].

The importance of this work is it not only confirmed the AB effect, but also

showed that, even though electrons experience a lot of elastic scattering from defects,

boundaries and impurities while diffusively transporting in disordered Au metal wire

at very low temperature at which the inelastic scattering from phonons is substantially
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Figure 2.3 Magnetoresistance oscillation and corresponding Fourier transform
observed in Au ring from [91].

suppressed, electrons can still maintain their phase coherence for a length scale defined

as phase coherence length Lφ, which is longer than the electron mean free path

Lf . Later it was proved that inelastic scattering such as electron phonon scattering,

electron-electron scattering can break the phase coherence [91, 23, 27, 90]. Together

with theoretical and experimental work on weak localization, AB effect experiment

in ring structures serve as the foundation of modern mesoscopic physics. The details

will be discussed in Chapter 3.

2.2 Adiabatic Geometric Phase: Berry Phase

Aharonov-Bohm effect was later theoretically reformulated by Berry as a special case

of adiabatic geometric phase which was later generally called Berry Phase [16]. M.
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V. Berry showed that for a quantum system which is in its energy eigenstate, slowly

evolved around a closed circuit in the parameter space, will acquire a geometric phase

exp(iγ) except the familiar dynamical phase, when the quantum system comes back

to its original quantum state. Berry derived the geometric phase as follows. Suppose

the Hamiltonian H can be changed by the external parameters R = (X, Y, ...). Let

the quantum system to transport around a closed circuit C in the parameter space

R(t) from t = 0 to t = T such that the Hamiltonian H(R(t)) changes accordingly.

The quantum state |ψ(t)〉 evolves with time as described by Schrodinger equation

H(R(t)) |ψ(t)〉 = i~ |ψ̇(t)〉 . (2.11)

The instantaneous orthonormal basis can be chosen as the energy eigenstates of H(R)

for R = R(t), which is expressed as

H(R) |n(R)〉 = En(R) |n(R)〉 , (2.12)

with corresponding energies En(R).

According to adiabatic theorem in quantum mechanics, as stated by Max Born

and Vladimir Fock, a quantum system which is initially at one of its eigenstates

|n(R(0))〉 will remain as the instantaneous eigenstate of the Hamiltonian H(R(t)) at

a later time t [20].

Therefore, |ψ(t)〉 at a later time t can be expressed as

|ψ(t)〉 = exp
{
− i

~

∫ t

0
dr′En(R(t′))

}
exp(iγn(t)) |n(R(t))〉 , (2.13)

in which the first exponential term is the dynamical phase.

Another phase factor γn(t) can be determined by putting ψ(t) into Schrodinger

equation. This leads to

γ̇n(t) = i 〈n(R(t))|∇Rn(R(t))〉 · Ṙ(t). (2.14)

At time T the quantum state is given by
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Figure 2.4 Berry’s first thought experiment was experimentally observed with
polarized neutron beam that pass through a long cylinder with helical coil on it. (a)
The helical coil generated varying magnetic field which finally goes back to the
original direction. (b) The cylinder with helical coil from [19].

|ψ(T )〉 = exp(iγn(C))exp
{
− i

~

∫ T

0
dtEn(R(t))

}
|ψ(0)〉 , (2.15)

where the geometric phase factor is

γn(C) = i
∮
C
〈n(R|∇Rn(R)〉 · dR (2.16)

From eq. 2.16, it is found that the closed circuit integral in parameter space alone

give the phase factor γn(C), which is independent of how R(t) varies in time. That

is why the phase factor is named as geometric phase.

One example Berry discussed in his original paper is a spin which is always parallel

with external magnetic field, whose direction changes adiabatically and finally returns
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Figure 2.5 In the center of the ring, suppose a flux line generate Φ. The radius of
the ring is R. An electron is confined in a box which moves slowly around the
trajectory C and goes back to original position.

back to the original direction. The spin finally accumulates a geometric phase factor

relates to the solid angle that B subtends during the adiabatic change of direction.

This thought experiment was shortly realized in 1987 by Bitter et. al who used spin

polarized neutron beam that passes along the center of a long cylinder inside which

the helical coil generated slowly varying B field as shown in figure 2.4 [19].

Berry also found that the Aharonov-Bohm effect could be viewed as a consequence

of geometric phase. As shown in figure 2.5, suppose a box which can confine an

electron move along a closed ring C. a flux line Φ is located in the center of the ring.

Vector R connects the origin point and a reference point in the box. Therefore the

external parameter is R itself in real space. Vector potential is related with magnetic
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field and flux as 2πφ̂ ·A = πR2B · ẑ = Φ. In this case, the Hamiltonian is a function

of position r̂ and momentum as

H = H(p, r−R). (2.17)

The eigenvalue En is independent of R. The corresponding wavefunctions are ψn(r−

R). Considering the flux line, eigenvalue equation is

H(p̂− qA(r̂), r̂−R) |n(R)〉 = En |n(R)〉 . (2.18)

The nth wave function can be expressed as

〈r|n(R)〉 = exp
{
iq

~

∫ r

R
dr′ ·A(r′)

}
ψn(r−R) (2.19)

Because in free space, electron can not transport in a curved trajectory. In this case,

when the box transports around the closed circuit C, it is the confinement from the

box that make the electron transport along the curve. The reflection from the box

wall alters the direction of the electron transportation. Compared with the electron

wavelength, the length scale between every two scattering from the box wall is a lot

larger. The direction change is also gradual, therefore the adiabatic requirement is

also satisfied. By applying eq. 2.16,

〈n(R)|∇Rn(R)〉 =
∫ ∫ ∫

d3rψ∗n(r−R)
{
− iq

~
A(R)ψn(r−R) + ∇Rψn(r−R)

}
= −iqA(R)/~

(2.20)

The gradient operator is with respect to R, so it can be taken out of the space integral.

From normalization condition of ψn, the phase factor can be calculated as

γn(C) = q

~

∮
C

A(R) · dR = aΦ/~, (2.21)

which is just the same as the AB phase.
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2.3 Non-adiabatic Geometric Phase: Aharonov Anandan Phase

An important extension of Berry’ geometric phase is the non-adiabatic generalization,

which was proposed by Aharonov and Anandan in 1987 [2, 7]. In their paper the

cyclic evolution of a quantum state without the restriction of adiabatic condition

was analyzed. Such non-adiabatic generalization emphasizes the purely geometrical

nature of phase which depends only on the geometry of pathway that the system

evolves along. The adiabatic restriction was also removed by Berry who calculated

the adiabatic correction terms [17].

After Aharonov and Anandan generalized geometric phase to the non-adiabatic

cyclic evolution, the cyclic condition was removed by Samuel and Bhandary [76]. Gar-

rison and Chiao generalized geometric phase to any classical complex multicomponent

field, which means the pendants of quantal phase also exist in classical theories as

Hannay angles [35, 40].

Aharonov-Anandan phase was derived by the introduction of the projective Hilbert

space. First considering Schrodinger equation

H(t) |ψ(t)〉 = i~
d
dt , (2.22)

Suppose the period of cyclic evolution is T , the initial state ψ(0) ∈ N0 and final state

ψ(T ) ∈ N0 are related by

|ψ(T )〉 = eiΦ |ψ(0)〉 , (2.23)

in which Ψ is real. N0 is the set of non-zero quantum states in H, such that N0 =

{|ψ〉 ∈ H| 〈ψ|ψ〉 = 1}. The projective Hilbert space consists of all quantum states in

N where the only difference is a phase factor. The projection map of

Π : N0 → P (2.24)

is defined by

Π(|ψ〉) = {|ψ′〉 : |ψ′〉 = c |ψ〉}, (2.25)
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where c is a complex number. A curve C is defined by |ψ〉 as a closed curve in P .

|ψ̃(t)〉 is defined as

|ψ̃(t)〉 = e−if(t) |ψ(t)〉 (2.26)

with f(t)− f(0) = φ. Then it is obvious

|ψ̃(τ)〉 = |ψ̃(0)〉 (2.27)

By applying Schrodinger equation,

−df
dt

= 1
~
〈ψ(t)|H |ψ(t)〉 − 〈ψ̃(t)| i d

dt
|ψ̃(t)〉 . (2.28)

Then the dynamical part can be removed from φ by defining

β ≡ φ+ ~−1
∫ τ

0
〈ψ(t)|H |ψ(t)〉 dt. (2.29)

By applying eq. 2.28, it gives

β = i
∫ τ

0
〈ψ̃| d

dt
|ψ̃〉 dt. (2.30)

By appropriately choosing f(t), for every curve C satisfying Π(C) = Ĉ, one can

choose same |ψ̃(t)〉. Therefore for a closed curve Ĉ, the phase β does not depend

on φ and H. From eq. 2.30, β does not depend on time t either. So it is purely

geometrical.

In Aharonov and Anandan’s original paper, three examples were discussed. First

example is a spin 1
2 particle in homogeneous magnetic field in the ẑ direction. In this

case the Hamiltonian is given by

H1 = −µBσz, (2.31)

where

σz =

1 0

− −1

 . (2.32)
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The initial quantum state at t = 0 is given by

|ψ(0)〉 =

cos(θ/2)

sin(θ/2)

 , (2.33)

such that at a later time t,

|ψ(t)〉 = exp(iµBtσz/~) |ψ(0)〉 =

 exp(iµBt/~)cos(θ/2)

exp(−iµBt/~)sin(θ/2)

 . (2.34)

This means the spin precesses with spin direction at the angle of θ to ẑ. The spin

precession period is τ = π~/µB. By using eq. 2.30, for every cycle, one has

β = π(1− cosθ) + 2πn. (2.35)

This result also means geometric phase exists naturally in quantum theory as one of

the fundamental natures.

A second example AA discussed was similar to Berry phase on the point that |ψ(t)〉

is always the eigenstate of Hamiltonian H(t) but with adiabatic approximation not

satisfied. The third example is Aharonov-Bohm effect which could also be expressed

as AA phase [2].

After AA proposed the non-adiabatic geometric phase theoretically, some exper-

imental works were performed to observe it. Suter et al used NMR techniques to

study a quantum system composed of coupled protons with total spin J = 1[81].

The Hilbert space is 3-dimensional because three independent states exist. Through

a varying magnetic field, the geometric phase was observed by measuring the inter-

ference between two states and a third unperturbed one. Another experiment was

performed by Chiao et al who used polarized light passing through a optical fiber

which was helically twisted [25, 85]

For mesoscopic electronic system, some theoretical work concentrated on the ge-

ometric phase with the electron spin put into consideration. Ady stern analyzed a
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Figure 2.6 Stern analyzed the mesoscopic ring in the existence of inhomogeneous
magnetic field composed of Bz and an azimuthal component Bφ. The ratio of two
field components is defined by angle α [79].

ring in magnetic field which has both ẑ component and φ̂ azimuthal components as

shown in figure 2.6. In his work, the non-adiabatic condition for such a mesoscopic

ring was analyzed in details [79]. Stern found the geometric phase can induce motive

force which couples to spin.

Loss et al analyzed motion of electrons in a mesoscopic ring with a crown like

magnetic field with ẑ component and polar ρ̂ component as shown in figure 2.7 [63].

They found Zeeman interaction between magnetic field and electron spin can couple

the electron spin and orbital motion and lead to geometric phase. They also found

persistent equilibriium charge and spin currents in the ring. Gao et al and Yi et

al made detailed calculation for the mesoscopic ring with different inhomogeneous

magnetic field texture [34, 94].
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Figure 2.7 Loss et al analyzed geometric phase in mesoscopic ring with
inhomogeneous magnetic field with both ez component and polar er component.
The angle between two components is χ [63].
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Chapter 3

Quantum Phase Coherent Transport in

Mesoscopic Thin Films

As mentioned in Chapter 1, conduction electrons transport in metal can be described

with Drude’s model which can give a simple illustration and good estimates of elec-

tronic properties within the classical picture [8]. With electric field applied, electrons

conduction can be expressed as

J = σE, (3.1)

where J is electric current density, σ is conductivity which can be given as

σ = ne2τ

m∗
, (3.2)

where n is electron density,m∗ the electron effective mass and τ the electron relaxation

time. The mean free path which measures the average distance that an electron travels

between scattering or collisions is given by

l = vF τ, (3.3)

where vF is the Fermi velocity. The corresponding Fermi wavelength is λF , which is

also the de Broglie wavelength characterizing the Fermi gas.

In disordered metal, the electrons’ trajectory is a random walk with average length

scale of the mean free path. The scattering which leads to random walk comes

from many sources such as impurities, defects, grain boundaries, phonons etc. These

different types of scattering are usually categorized as elastic scattering and inelastic

scattering with their corresponding relaxation time as τ0 and τi. The elastic scattering
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only changes the momentum of an electron while the inelastic scattering changes the

energy of an electron. Therefore, τ0 and τi are also the lifetime of an electron in its

momentum eigenstate and energy eigenstate respectively.

3.1 Characteristic Length and Diffusive Transport

At low temperatures, the electron phonon inelastic scattering is suppressed. There-

fore the conduction electron can maintain its phase coherence after experiencing many

elastic scattering events. Both Aharonov-Bohm effect and weak localization effect ob-

served at low temperature are such quantum phase coherence effect. For mesoscopic

regime, the classical picture of conductivity can no longer give an adequate descrip-

tion. The wave nature of the electron also need to be put into consideration. In

order to analyze the transport properties of electrons in mesoscopic structures, sev-

eral characteristic length scales need to be identified and compared.

The elastic mean free path l0 = vF τ0 is a characteristic distance an electron’s

momentum is changed by elastic scattering centers such as impurities, defects and

boundaries. Such elastic scattering does not break the phase coherence of electron

wave function. So an electron can experience many elastic scattering before it loses

its phase coherence.

Another length scale is the phase coherence length lφ, which is defined as the

distance between two complementary scattering events that an electron loose its

phase coherence. The phase breaking sources include electron-phonon scattering and

electron-electron scattering which are both inelastic scattering. At low temperature

the scattering from phonon is negligible. Electron-electron scattering mainly con-

tributes the phase breaking.

By comparing the sample length L and width W with elastic mean free path

l0 and phase coherence length lφ, one can clearly distinguish the different transport

regimes as shown in figure 3.1:
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Figure 3.1 Schematic diagram for different electron transport regimes: diffusive
regime; Quasi-ballistic regime; ballistic regime [42].

Ballistic regime: lφ � l0 � L,W :

In ballistic regime, the sample size is much smaller than the elastic mean free

path. Therefore the electrons encounter almost no scattering from impurities. The

dominant scattering is from the boundaries of conductor. The time of flight is τf =

L/vF with electron momentum assumed to be constant. Additionally, if the width

of sample is small compared to λF , there are only several channels for the electron

transport [59].

Quasi-ballistic region: W < l� L
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Diffusive regime: L,W � l0.

In diffusive regime, the elastic mean free path is much smaller that the length

of the sample. The disorder scattering dominates. Therefore the electron performs

random walk. When phase coherence is taken into account, the situation is more

interesting. In diffusive region, the phase coherence length can be expressed as:

lφ =
√
Dτφ, (3.4)

where D is the diffusion coefficient of electrons in the conductor, τφ the dephasing

time.

In the weakly disordered diffusive regime, i. e. λF � l0 � L, lφ mesoscopic regime,

many interesting quantum phase coherence phenomena such as AB h/e oscillation,

AAS h/2e oscillation and weak localization effect will appear.

3.2 Altshuler-Aronov-Spivak h/2e Oscillation and Weak

Localization: Coherent Backscattering

As mentioned in Chapter 1, Aharonov-Bohm effect of h/e oscillation observed in sub-

micron diameter Au ring is a typical evidence of quantum phase coherence for the

sample size comparable to lφ. However, the magnetoresistance oscillation measured

with a lithium cylinder showed h/2e oscillation as shown in figure 3.2 [5, 6]. Similar

AAS h/2e oscillation was also observed in a series of arrays of sub-micron diameter

silver loops (one, three, ten and thirty) as shown in figure 3.3a* [87]. Both metal

cylinder and ring arrays can be interpreted as ensemble of identical and uncorrelated

rings. Umbach et al’s work clearly showed h/2e oscillation can persist for ensemble

average of many loops while the h/e AB oscillation decreases linearly with square

root of the number of loops as shown in figure 3.3b* [87]. This means the phase

coherent h/2e AAS oscillation can persist on average while h/e AB effect can not.

Another significant difference between h/e AB oscillation and h/2e AAS oscillation is
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Figure 3.2 Lithium film evaporated on a quartz filament. Lz is 1cm, lφ is 2.3µm,
film thickness is 0.12 µm. The diameter is 1.1 µm. h/2e magnetoresistance
oscillation was observed with lithium cylinder from [5, 6].

that h/2e oscillation only exist at low magnetic field while h/e oscillation can persist

to rather high magnetic field [91, 23, 87].

It is also found that h/2e oscillation is superimposed on a background magnetore-

sistance change which also appear in single metal wire [87, 23, 5, 6]. This background

magnetoresistance change is known as weak localization (anti-localization) correction

which will be discussed later. These natures of AAS effect can be explained as origi-

nating from coherent backscattering of two electron partial waves that propagate in
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Figure 3.3 a*, h/e and h/2e magnetoresistance observed in one, three and thirty
silver loops. b*, h/2e oscillation persists with increasing number of loops. h/e
oscillation decrease linearly with the square root of number of loops[87].

opposite directions along time reversal trajectory.

Here both h/e oscillation and h/2e oscillation will be analyzed.

Landauer electrical theory tells that the electrical conductance is related to trans-

mission probability as

G = 2e
2

h
T. (3.5)

Therefore the measured conductivity oscillation actually reflects the electron wave

transmission probability oscillation.
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Figure 3.4 Schematic diagram of the ring with disordered scattering center.
Electron transverse from position M to position N through two Feynman paths.

For simplification, let’s consider the one dimensional ring structure first. Con-

sidering an electron transmitted from position M to position N as shown in figure

3.4. The electron wave Ψ is decomposed into two partial waves ψj = tje
φj (j = 1, 2),

where tj is the amplitude of two partial waves. Two partial waves traverses the top

and bottom arms respectively through many elastic scattering centers and form two

Feynman paths. The total transition amplitude at position N is

Ψ(N) =
∑
j

ψj =
∑
j

tj exp(iφj) (3.6)

The probability to find the electron at position N with flux Φ is

P (N) ≡ |Ψ(N)|2 =
∑
j

|ψj|2 +
∑
j 6=k
|tj||tk| cos(φj − φk). (3.7)

Where the first term is classical transition probability, the second term denote the

interference effect. With Φ applied, specifically for the ring, the electron canonical

momentum is p + eA/c considering the electron charge of −e, the phase change of

the j trajectory is

φj = φ
(0)
j + e

~

∫
1

A · dl, (3.8)
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where φ(0)
j is the phase when Φ = 0. For the ring with j = 1, 2, the phase change in

the interference term is

∆φ(Φ) = φ
(0)
1 − φ

(0)
2 + e

~

∮
A · dl = ∆φ(0) + 2π φ

φ0
, (3.9)

where φ0 = h/e, which gives the Aharonov-Bohm conductance oscillation while

changing B field and the relevant flux Φ with period of h/e.

It is generally understood that in equation 3.9, ∆φ(0) is a random phase between

−π and π when the flux Φ is 0 [70, 47]. There are several possible reasons for the

random 0 flux phase. One reason is for a specific single ring, the microscopic details

of trajectory 1 and trajectory 2 are different. Electrons experience different scattering

events while traversing through trajectory 1 and 2, leading to a random phase. The

second reason is at beam splitter N , a fraction of the wave coming from the half ring

does not leave the ring but travers back around another half ring. This lead to either

0 or π random phase form more complete calculation [41]. Because of this 0 flux

random phase for specific ring, while taking ensemble average over rings arrays as in

Umbach et al’s work or ensemble average of the long cylinder as in Sharvin Sharvin’s

work, the h/e oscillation which comes from the second term of equation 3.7 dies out.

Now it is the turn for h/2e AAS oscillation which can survive ensemble average.

In AB oscillation, the two trajectories are half circle as shown in figure 3.5a. However,

there is another possibility that two partial waves can traverse the whole ring and

finally interfere at the origin point supposing the phase coherence is mainteined. Let’s

re-write the transition probability at original point

P (M) ≡ |Ψ(M)|2 =
∑
j

|ψj|2 +
∑
j 6=k
|tj||tk| cos(φj − φk). (3.10)

In this case, with the applied flux, the phase change in the interference term is

∆φ(Φ) = φ
(0)
1 − φ

(0)
2 + 2 e

~

∮
A · dl = ∆φ(0) + 4π φ

φ0
. (3.11)

Therefore the interference term contributes an oscillation of h/2e to the conductance.

If the two trajectories are time reversed paths, which means the trajectories are
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Figure 3.5 a, Two partial waves traverse along half circle and interfere with each
other. b, Two partial waves traverse in opposite direction encircling the whole ring
and satisfying time reversal symmetry. The interference happens at the origin point.
[47].

exactly identical (electrons scatter from the same impurities) but only in opposite

directions, the random phase ∆φ(0) disappears. This process is often recognized as

Coherent Back Scattering. The time-reversed pairs are often called Cooperons due

to the similarity to superconducting Cooper pairs [60].

When ensemble average is taken for ring arrays as in figure 3.3 or figure 3.2,

every ring contribute an h/2e oscillation with 0 random phase. This is why the AAS

oscillation can survive the ensemble average, which is a major difference with AB

oscillation.

From experiment it was found that AAS h/2e oscillation only appears at low

magnetic field, the oscillation amplitude decreases with increasing magnetic field.

This is because as field increases, the Lorentz force coming from the magnetic field

penetrating the ring arms breaks the time reversal symmetry of the two trajectories

of Cooperons.
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Another quantum coherent interference effect is weak localization correction to

conductivity observed in disordered diffusive metal thin film or wire at low temper-

ature. When Φ = 0, the probability of the electrons to return back to the origin is

enhanced because of the Coherent Back Scattering. This is the origin of Weak Lo-

calization. It also happens in quasi-one dimensional metal wires or two dimensional

metal thin films. It can be understood as there exists many coherent back scattering

loops with different area the loops encircle. While a magnetic field is applied, the

time reversal symmetry of the coherent back scattering loops is broken, therefore the

conductance is increased (for the case of weak spin-orbit coupling). For the case of

strong spin orbit coupling, the coherent back scattering contributes destructive inter-

ference of the back scattered probability by flipping the spin direction and leads to

the opposite weak anti-localization.
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Chapter 4

Sample Fabrication and Electrical

Measurements

4.1 Electron Beam Lighography

Electron beam lithography is a very effective way for the nano scale fabrication. In

our experiment, sequential E-Beam lithography is heavily used for the fabrication

of multilayer structure. The reason we chose such a difficult way to make NLSV is

because we wanted to realize single layer everywhere but not only the center small

feature, such that the possible more intrinsic nature of NLSV can be measured and

analyzed. Most of the sample fabrication procedure is completed in the cleanroom.

We used a <100> N-type silicon wafer with thermally oxidized SiO2 layer on top.

The wafer was pre-cleaned by ultrasonic cleaning in acetone for 3 minutes, then in

isopropyl alcohol (IPA) for 3 minutes. Then the wafer was blow dried with pure

nitrogen gas.

1, The wafer first spin coated a layer of PMMA 495 for 45 seconds.

2, Then the wafer was baked on a hot plate with temperature of 180◦C for 90

seconds in the fume hood.

3, The wafer was spin coated with another layer of PMMA 950 for 45 seconds for

45 seconds.

4, Then bake the wafer on a hot plate with temperature of 180◦C for 90 seconds

in the fume hood. Cautions need to be taken to prevent dust from accumulating on

the PMMA.
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5, The wafer was then put in SEM for E-beam lithography. JEOL JSM-840A and

Zeiss ultra plus were used to write the pattern. For JEOL JSM-840A, the sample

pattern was first designed with Design CAD, then converted to DC2 files and layer

files. Through the AD converter, the SEM write the layers of pattern on the wafer.

For the Zeiss ultra plus FESEM, the patterns were also first designed with Design

CAD. Then the JC Nabity Nanometer Pattern Generation System (NPGS) was used

for focusing, optimizing the SEM and writing the pattern with the run file with

parameters such as dose, line spacing etc. Usually 12 samples with different ring

diameter or injector detector distance were fabricated on a single piece of wafer to

get samples with uniform nature. The sample patterns and alignment marks were

written together on the wafer.

6, The wafer was taken out of SEM and put into developer (MIBK : IPA = 1 :

3) for 30 seconds and then rinsed with isopropyl alcohol (IPA) and blow dried with

pure nitrogen gas.

Then the wafer was ready for metal and oxide deposition. For Al/MgO/Co sam-

ples, the Al/MgO ring and bar spacer layer was patterned and deposited first. Then

a second E-beam lithography was performed to pattern and deposit the Co layer. For

Py/MgO/Al samples measured in dilution fridge, the Py/MgO injector and detector

bars were patterned and deposited first via magnetron sputtering, followed by second

E-beam lithography and deposition of Al rings and bars.

4.2 Thermal, E-Beam Evaporation and Magnetron Sputtering

Deposition

The wafer was then put into Torr International combination deposition chamber

and pump down to 10−7 Torr. For Al/MgO/Co sample, 200 nm Al layer was first

evaporated from 99.999% purity aluminum pellets which were heated in a Al2O3

coated tungsten boat. Then without breaking the vacuum, RF magnetron sputtering
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was used to deposit 2 nm MgO layer from MgO target with working gas of high

purity Argon. After the second layer E-beam lithography pattern, 50 nm Co layer

was deposited by thermal evaporation or e-gun evaporation.

For Py/MgO/Al samples, the wafer was put in AJA International Sputtering

system for deposition. With all the needed targets installed, the system was first

pumped down to base pressure of 10−8 Torr. Sometimes, in order to accelerate the

pumping, the quartz heater was used to bake the whole chamber. Deposition rate and

corresponding sputtering time were first checked with film thickness monitor. Then

the wafer was transferred in the main chamber. The substrate which hold the wafer

was spinning at 12 revolutions per minute to get uniform film thickness. Before actual

deposition, all targets were pre sputtered for several minutes to remove the possible

contamination or oxide layer on the surface. 20 nm Py layer was first sputtered on

the wafer. Then the MgO layer with thickness of 2 nm was sputtered on top.

After sputtering, the sample was taken out for lift-off in acetone. Then the wafer

was spin coated with PMMA 495 and 950 again for the second step e-beam lithogra-

phy and Al spacer sputtered deposition.

4.3 Other fabrication steps: dry etching, dicing and wire bonding

Before the second layer deposition, Argon plasma was used to remove the possible

contamination or developer residue, either in the Trion RIE/ICP dry etch system or

in the sputtering chamber.

After the two step lithography and deposition, 12 samples on the wafer were

divided into 12 parts by wafer dicing. Then each small piece of wafer with one

sample on it was glued on the sample holder with silver paint.

At last, wire bonding was performed to connect the 6 contacting pads of the

sample to the leads of the sample holder. Either Au or Al wires were used for wire

bonding.
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The sample was ready for measurement in PPMS or dilution fridge.

4.4 Physical Property Measurement System: electrical

measurement at low temperature

The electrical properties of Al/MgO/Co samples were measured in Quantum Design

Physical Property Measurement System (PPMS) equipped with 9 Tesla supercon-

ducting magnet. The lowest temperature the PPMS can reach is 1.9 K. Sample

holder was mounted on a probe with rotator such that the angle between magnetic

field and sample plane can be changed from 0 to 90 degree. After setting the temper-

ature of sample chamber of PPMS at 305 K, the rotational probe with sample was

inserted in the sample chamber, then purged with Helium gas for 3 times and pumped

down to 10 mTorr. Then the temperature was drop to the desired temperature such

as 4.2 K and 1.9 K for Non-local voltage measurement with parallel and perpendic-

ular magnetic field sweep. The probe leads connecting the sample were connect out

to a home made switch box such that the more accurate Stanford Research System

Lock-in Amplifier SR 850, 8.5 digit multimeter and AC/DC current sources could

be used for electrical measurement. All connecting leads out of the PPMS were well

shielded. Military species connector was used to secure shielding.

4.5 Dilution Refrigerator for Milli-Kelvin Measurement

Another group of Py/MgO/Al samples were taken to National High Magnetic Field

Laboratory for milliKelvin temperature measurement in Oxford dilution refrigerator

with parallel sample stage and perpendicular sample state.
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Chapter 5

Simultaneous Detection of Spin Signal and

Interference

The Aharonov-Bohm (AB) effect was first proposed in 1959 and experimentally ob-

served in 1985 in a mesoscopic Au ring by electrical quantum phase coherence detec-

tion of h/e oscillations during magnetic field sweeps at very low temperature [3, 91].

The wavefunction phase change due to the AB effect was later reformulated by Berry

as a special case of his Berry phase in 1985 [16, 7]. Berry considered an adiabatic ge-

ometric phase in which the quantum system is always in an instantaneous eigenstate

and whose Hamiltonian changes adiabatically around a closed circuit in parameter

space [16, 19]. Aharonov and Anandan (AA) later proposed a more generalized ge-

ometric phase for non-adiabatic evolution where the quantum state need not be an

eigenstate of the Hamiltonian [7, 2].

In a mesoscopic metal ring structure with interaction between spin and external

magnetic field included, the quantum adiabatic approximation is valid for eigenstates

in which the spin direction is parallel or antiparallel to the magnetic field and for

fields at which the time it takes the electron to transit the ring is much larger than

the period of Larmor precession [79, 32, 43].

We design and fabricate, for the first time, a non-local lateral spin valve (NLSV)

electron interferometer with such a ring structure. We experimentally observe AA’s

non-adiabatic geometric phase by measuring both the coherent h/e oscillation and

spin precession. Spins were injected aligned in plane with the ring and the magnetic
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field was perpendicular to it. The field was low to ensure that the precession time

was longer than the transit time of the ring, resulting in non-adiabatic transport,

and therefore making this an AA phase measurement rather than a Berry phase

measurement.

A NLSV is an effective tool to generate and detect spin polarized electrons in

mesoscopic metal and semiconductor systems. In Hanle effect measurements, a mag-

netic field perpendicular to the plane generates spin precession with a spin direction in

plane while electrons diffuse from injector to detector [96, 36, 50, 84, 33, 38, 64, 26, 39].

During diffusion, spin can relax via ordinary momentum scattering with spin-orbit

coupling [96], i.e. the Elliot-Yafet mechanism. Momentum scattering in diffusive

metal films is typically caused by impurities [15]. Such scattering is elastic and

therefore does not break the phase coherence of the electron wave function. Electron-

phonon inelastic scattering is the main cause of phase decoherence. But at low tem-

peratures, this is suppressed, thereby enabling the observation of interference effects

like those due to weak localization and AB oscillations even in disordered diffusive

metals [91, 15]. However, in the original AB effect measurement in Au rings, spin

was not considered, nor was the spin-magnetic field interaction from the field that

penetrates the ring itself [91].

5.1 Non-local spin Signal and distance dependence

Figure 5.1a shows a sketch of the interferometer. Ferromagnetic bars FM1 and FM2

serve as spin injector and detector. FM1 and FM2 spacing l is relatively large to fit

the ring between them. In order to get a large non-local spin signal for such a large

spacing, several factors need to be considered [46]. Assuming an Elliot-Yafet mecha-

nism, the spin-orbit coupling in combination with momentum scattering leads to spin

relaxation [96], while spin-orbit coupling is generally believed to be proportional to

the fourth power of the atomic number of the metal [78]. Therefore we use aluminum,
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Figure 5.1 (a) Sketch of the NLSV interferometer. Ferromagnetic bars FM1 and
FM2 with moments parallel and in plane. AC current was applied between FM1
and NM1. With perpendicular magnetic field, the precessing spin current diffuses
from FM1 to FM2 while experiencing a non-zero magnetic potential due to the
magnetic flux enclosed by the ring. Non-local voltage is measured between FM2 and
NM2. The distance of electron transport from FM1 to FM2 is L = l + (π/2− 1)d.
(b) SEM image of Al/MgO|Co NLSV after electrical measurement. The scale bar is
1 µm. The diameter of the Al/MgO ring is 0.95 µm while the line width of the ring
is 100 nm ± 20 nm. Different profiles of Co1 (0.4 µm wide and 18 µm long) and
Co2 (0.3 µm wide and 28 µm long) give different coercive fields.
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which has the advantage of a relatively large spin diffusion length of 1.2 µm [46, 51]

and large phase coherence length of 2.0 µm [23]. It has also been reported that a

MgO tunnel barrier can enhance spin accumulation, by reducing the conductance

mismatch between the FM and NM, and therefore enables long distance spin preces-

sion [33, 38]. Therefore, we constructed Al/MgO|Co(Py) NLSVs with ring-shaped

NM spacers.

Figure 5.1b is an SEM image of a Al/MgO|Co device with 0.95 µm diameter ring.

Two separate e-beam lithographic and deposition phases were required to build the

samples. First, the NM ring and electrodes were patterned by e-beam lithography

and 20 nm of Al was deposited by thermal evaporation at a base pressure of 10−7

Torr. Without breaking vacuum, 2 nm of MgO was deposited via RF magnetron

sputtering. Second, e-beam lithography was again used to pattern the FM bars and,

before metal evaporation, an Argon plasma was used to remove any lithographic

residue and other contamination. Then, 50 nm of Co was thermally evaporated at

10−7 Torr. Finally, samples were annealed at 360 ◦C for 10 minutes at 10−6 Torr [95].

For the samples considered here, the diameter d of the rings, measured via SEM,

were 0.95 µm and 2.2 µm. Electron transport distance L was 2 µm for 0.95 µm

ring. Al bar samples with L of 0.5 µm, 1 µm and 2.3 µm were also fabricated at

the same time to serve as controls. Al/MgO|Co samples were measured in a cryostat

with a lowest achievable temperature of 1.9 K. Another group of Py(20 nm)/MgO(2

nm)|Al(60 nm) ring samples were fabricated and measured in a dilution refrigerator

with a lowest achievable temperature of 50 mK.

We first measured non-local voltage VNL for both ring and bar samples with dif-

ferent L using standard lock-in techniques. Alternating current, amplitude of 2 µA

at 17 Hz, was applied between Co1 and NM1. VNL was measured between Co2 and

NM2. The in-plane field, B‖, was swept between ±0.03 T at 1 mT/s and 4.2 K. The

inset of figure 5.2 is a typical non-local spin current measurement for the 0.95 µm
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Figure 5.2 Spin resistance for In-plane magnetic field: Distance dependence of spin
resistance for both ring (L = 2 µm) and bar samples (L = 0.5 µm, 1.0 µm and 2.3
µm) at 4.2 K yields an average spin diffusion length of 1.76 µm and spin
polarization rate of 0.7. Inset: 200 mΩ spin resistance was observed for a 0.95 µm
ring with 2 µm Co1/Co2 distance.

ring. A very high spin resistance (∆RNL = ∆VNL/I) of 200 mΩ was observed for

L = 2µm.

Spin resistance and diffusion length are related by[50]

∆RNL = ±1
2P

2 λsf

σAlA
exp(−L/λsf). (5.1)

P is the spin polarization of current injected into Al from Co1, λsf the spin diffusion

length in the Al, and A the cross sectional area of the tunnel junction. σAl is the

conductivity of the Al film which was found to be 3 × 107 Ω−1m−1 from the linear
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fit in figure 5.2. We find an average spin diffusion length of 1.76 µm and a spin

polarization of 0.7 in both the ring and bar samples.

Theoretically, the channel width might affect spin resistance by introducing more

space for random walk in diffusion, but actually for qusi-one-dimentional metal wires

(width w, thickness t, length L, satisfy w, t � λsf , w, t � L), to what extend it can

influence the spin resistance for metal wires in the ring sample is not clear (considering

1.49 µm long wire is doubled in width and the spin resistance of ring fits within error

in the exponential decay of bar samples. This inspires an interesting experimental

work of channel width dependence on spin resistance. If possible we will work that

out in the future.

5.2 Hanle effect Measurement with Perpendicular Field

To determine the transverse spin diffusion length, a Hanle spin precession measure-

ment was made with an out-of-plane magnetic field, B⊥ between ±0.17 T at 1 mT/s,

for the same ring sample 1 in figure 5.2. The sample was first prepared in parallel

configuration. Figure 5.3 shows the resulting Hanle effect curve. The solid line fits

the spin resistance to [50]

∆RNL = ± P 2

e2NAlA

∫ ∞
0

p(t) cos(ωLt) exp(−t/τsf)dt, (5.2)

where p(t) = (1/
√

4πDt) exp [−L2/(4Dt)] is the distribution of diffusion times

from injector to detector, e the electron charge, D the diffusion coefficient in Al,

NAl = 2.4 × 10−3 eV−1cm−3 the density of states of Al near the Fermi level[71],

ωL = gµBB⊥/~ the Larmor frequency, and g the g-factor in Al. From the fit, we get

a spin relaxation time of τsf = 286 ps, diffusion coefficient of 0.0108 m2s−1 and spin

polarization of 0.68. The spin diffusion length is then λsf =
√
Dτsf = 1.69 µm, which

agrees quite well with the previous distance-dependent spin resistance measurements.
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Figure 5.3 Spin resistance for perpendicular fields for ring sample 1: Black circles
are data showing a clear Hanle effect curve for a 0.95 µm ring Al/MgO|Co at 4.2 K.
Solid line is a least squares fit to eq. 5.2. Only every 10th data point is shown for
clarity.

5.3 Non-adiabaticity and Aharonov-Anandan Phase: Spin Current

Aharonov-Bohm Oscillation

The Hamiltonian for an electron with spin is

H = 1
2m∗

[
p + e

c
A(r)

]2
+ V (Rn) + µB · σ. (5.3)

where m∗ is the effective electron mass, p + e
c
A(r) its generalized momentum, A the

magnetic vector potential, µ the electron magnetic moment, and σ the Pauli matrix.

V (Rn) is defined by the confinement of the conductor and the impurity potential
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[79, 34, 32, 94, 43], where Rn is the position vector of the nth scattering event.

In the explanation offered in the experimental observation of AB phase in Au rings

[91], electrons are assumed to move ballistically between elastic scattering centers

Ri and Ri+1. When the spin degree of freedom is not considered, H(Ri) |ψi〉 =

E(Ri) |ψi〉 holds after the scattering event at Ri such that |ψi〉 is the instantaneous

eigenstate of eq. 5.3 without the last term. This is how the AB phase is viewed as a

special case of Berry’s adiabatic geometric phase [16].

The complete description of the electron quantum state is |Ψ(t)〉 = |ψ(r, t),S(t)〉 =

|ψ(r, t)〉 ⊗ |S(t)〉, where |ψ(r, t)〉 is the spatial part while |S(t)〉 is the spin part. The

injector aligns the spins in the x-direction (figure 5.1a), i.e. |S(t = 0)〉 = |Sx;±〉, the

eigenstate of Sx. When diffusing from injector to detector through the ring with a

uniform magnetic field B = Bzẑ = B⊥ẑ applied, the spin precesses in the x-y plane

at the Larmor frequency.

The spin is perpendicular to Bz after each scattering event, so the electron state

ket Ψ(t) is not at the instantaneous eigenstate of the Hamiltonian, eq. 5.3, since

[H,Sz] = 0. The average value of Sx can be inferred by the non-local voltage between

Co2 and NM2 and the associated Hanle curve. At Bz = 0, the electrons diffuse from

injector to detector without spin precession. When Bz increases to Bz,min = 0.15 T

as shown in figure 5.4a, the Hanle curve reaches its first minimum, for which the spin

precession angle is π [46].

Since half of the ring circumference is 1
2πd, the magnetic field which causes a

precession of π while diffusing a distance 1
2πd is Bz,π = (2L/πd)Bz,min ≈ 0.19 T.

Therefore, for magnetic fields Bz < 0.19 T, the time for an electron to transit the

ring is shorter than the period of Larmor precession. Based on the above analysis, in

0.95 µm NLSV interferometer at low fields, the quantum adiabatic approximation is

violated.

We use AA’s approximate treatment to get the geometric phase factor[2],

53



www.manaraa.com

Figure 5.4 (a) Non-local Hanle curve for a 0.95 µm ring at 1.9 K. (b) FFT of the
non-local Hanle curve shows a peak at 168 T−1, which corresponds to an h/e
oscillation.

β = − e
~

∮
γ
Aµdx

µ + 1
~

∮
γ

p · dx. (5.4)

where β is the AA’s geometric phase, Aµ the electromagnetic four-potential, p the

kinetic momentum, and γ the space-time closed curve of two electrons propagating

through the two arms for the ring. Because of time reversal symmetry between the

two paths, the time component is zero,
∮
γ A0dx

0 = 0. Further,
∮
γ p · dx = 0 for a

complete trip around the ring. Therefore, we have

β = e

~

∮
γ

A · dx = e

~
ΦB. (5.5)
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Figure 5.5 (a) Local Hanle effect (magnetoresistance) for a 2.2 µm ring with spin
polarized current of 2 µA at 2.5 K. (b) FFT of the local Hanle curve for a 2.2 µm
ring shows both h/e and h/2e oscillations with peaks at 973 T−1 and 1948 T−1.

where ΦB = Bz · S is the magnetic flux through the enclosed area of the ring.

With B⊥ sweeping, a sinusoidal oscillation of non-local resistance with ∆Bz ·S =
2π~
e

should be observed superimposed on the standard Hanle curve because precession

does not break phase coherence. Figure 5.4a is a Hanle effect curve for the 0.95 µm

ring with AC current of 0.5 µA at 1.9 K. By taking the Fourier transform of the Hanle

curve, we observe a peak at 168 T−1 as in figure 5.4b. This peak corresponds to a

resistance oscillation with period ∆Bz = 5.9 mT. By calculating the average area of

the hole enclosed by the ring, we get ∆Bz = 5.8 mT. Considering that the accuracy

of area measurement is 10%, this is very good agreement.

55



www.manaraa.com

The difference in spin diffusion length between sample 2 and sample 1 is probably

originated from pinholes on 2 nm thick MgO tunnel barrier. It is reported that in

Graphene based non-local spin valve with MgO as tunnel barrier, the λsf = 1.2 µm for

device with pinholes on tunnel barrier. For device with good tunneling, λsf = 3.9 µm

(Wei Han et al., PRL, 105, 2010). We actually also observed similar effect for different

groups of samples while fitting the Hanle curve. Practically in MgO sputtering, 2 nm

thickness is very thin and difficult to be monitored accurately during deposition. In

addition, considering the smoothness of thin film, it is very probably that pin holes

exist on the MgO tunnel barrier.

5.4 Magnetoresistance with Spin Polarized Current

The local Hanle effect was observed by magnetoresistance measurements of a 2.2

µm diameter ring, showing an interference effect with spin polarized current and

spin precession; both diffusive spin precession and drift current exist. A 2 µA AC

current at 17 Hz was applied between Co1 and Co2 prepared parallel in plane and

the voltage between NM1 and NM2 was measured via lock-in with B⊥ sweeping. The

magnetoresistance curve (Figure 5.5a) is weak-antilocalization-like [15], but fitting

to the model [44] produces unreasonable results. This is understandable because

Hikami’s model does not consider spin polarization[44]. The Fourier transform of the

magnetoresistance curve is shown in figure 5.5b. Two peaks at 973 T−1 and 1946 T−1

were clearly observed and, from equation 5.5 with β = 2π, correspond to h/e and

h/2e oscillations, respectively.
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Chapter 6

Superconducting Spin Current

In order to study the spin transport properties in superconducting state Aluminum

and the relevant interference effect with ring structure in the NLSV interferometer, the

milliKelvin temperature measurement was performed for a Py/MgO/Al 1 diameter

ring sample in dilution refrigerator. Only parallel magnetic field measurement was

accomplished and presented here because the sample died while raising temperature

and switching to a stage for perpendicular magnetic field measurement.

We observe that the spin signal does not depend markedly on temperature in the

superconducting state, in contrast to what the quasiparticle picture suggests[82]. We

also observe a localized increase in non-local resistance when both the detector and

injector are in the negative parallel configuration and the temperature is below Tc

(see figure 6.7).

Careful analysis and comparison with previous experimental and theoretical works

suggest that, in the injection region, it is a Lateral Josephson Junction which can

create the long range triplet components (LRTC) in the ferromagnetic injector [89,

12, 56]. The measured spin current in superconducting state Aluminum ring suggests

that such LRTC with spin projection of ±1 in FM1 can also leak into Aluminum, exist

in Aluminum thin film for a short period of time, spread out in two directions at the

injector region and finally detected by FM2, even though Aluminum is conventional

superconductor and traditionally believed only spin-singlet Cooper pairs exist.
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6.1 Introduction

It has been verified that spin triplet cooper pairs, once created, can diffuse in fer-

romagnet for a long distance while spin singlet cooper pair wave function declines

rapidly in an oscillatory mode [13, 14]. In addition, theory also predicted different

ways of spin singlet-triplet conversion in Ferromagnet/Superconductor hybrid struc-

ture [13, 12]: one is magnetic inhomogeneity near the S/F interface, such as non-

collinear magnetization of magnetic multilayers [88] which has been experimentally

realized widely (a typical work is from Robinson et al., [74]); another way to realize

singlet-triplet conversion is to use spin-orbit (SO) coupling which can naturally gen-

erate long-range triplet components (LRTC) in ferromagnet [12]. In reference [12],

a lateral Josephson junction as shown in figure 6.1 was also analyzed by Bergeret

to explain the existing experimental result of 0 resistance of Cobalt nanowire with

superconducting electrodes below Tc of the electrodes [12, 89].

6.2 Experimental Details

Py/MgO/Al NLSV interferometer samples group with ring diameter of 1 µm, 1.5 µm

and 2 µm were fabricated as shown in figure 6.2. Often 12 samples were patterned

on a single piece of Silicon wafer. First, FM1 and FM2 bars were patterned through

E-beam lithography. The geometry of FM1 and FM2 are 12 µm×1.5µm and 28

µm×0.8µm. Different FM1/FM2 distances were designed to fit different diameter

rings. After development, the samples were put into high vacuum chamber with base

pressure of about 10−8 Torr for deposition. For this group of samples, magnetron

sputtering was used for deposition. First, 20 nm of NiFe was deposited from Ni80Fe20

high purity target by DC magnetron sputtering. Then a 2 nm thick MgO layer was

deposited from high purity MgO target by RF magnetron sputtering. After that,

the sample was taken out for lift off in Aceton for about 1 hour. After rinse and
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Figure 6.1 Different geometries of singlet-triplet conversion discussed theoretically
by Bergeret [12]. b, lateral Josephson junction proposed by Bergeret for the
explanation of 0 resistance of 600 nm long Co nanowire under Tc of Pb
electrodes.[12, 89].

blow dry with Nitrogen gas, the sample was spin coated with double layer PMMA495

and PMMA950 followed by 90 seconds baking on 180◦C hot plate thereafter. Then

the second layer E-beam lithography was performed to pattern the rings for different

samples. After development, the samples were cleaned with Argon ion to remove the

possible contamination and developer. Then 60 nm thick Aluminum layer was DC

sputtered. The typical ring samples are shown in figure 6.3 and figure 6.4. A bar

sample as control was also fabricated at the same time in the same sample group as

shown in figure 6.5
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Figure 6.2 Schematic diagram of NLSV interferometer in our experiment. At the
injection region, it is a lateral Josephson junction as Bergeret suggested in [12].

Figure 6.3 SEM image of a typical 1 µm diameter ring Py/MgO/Al NLSV
interferometer ring sample.
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Figure 6.4 SEM image of a typical 1.5 µm diameter ring Py/MgO/Al NLSV
interferometer ring sample.

Previous works[73, 67] on NLSV bar systems have shown a marked change in

∆RNL as the temperature crosses Tc from above, therefore, we made non-local spin

measurements at a range of temperatures from 50 milliKelvin to 1.6 K, above Tc. A

Py/MgO|Al 1 µm diameter ring sample was cooled to 50 mK in a dilution refrigerator.

Non-local resistance was measured with an AC injection currents of 0.125 µA, 0.25

µA, 0.5 µA, 1 µA and 2 µA at 79 Hz[33]. Before measurement, a +1 T high magnetic

field was once applied parallel to FM1 and FM2. Magnetic field was then swept

between−0.03 T and +0.03 T parallel to the injector and detector in plane at different

temperature at the rate of 10 Gauss per minute. To measure the TC , a quasi-static

temperature sweep was performed at the rate of 1 mK per minute with injection

current of 0.5 µA, 1 µA and 2µA respectively . To find out Critical field at different

temperature, parallel magnetic field was swept between −700 G +700 G at 60 Gauss
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Figure 6.5 SEM image of a Py/MgO/Al NLSV bar sample serving as control.

per minute at 1.4 K, −1000 G and +1000 G at 60 Gauss per minute at 1.3 K.

6.3 Results and Discussion

6.3.1 Inconsistency with Prediction from Bogoliubov Quasiparticle

Theory

The inset of figure 6.6 shows Tc detection with 3 different FM configuration with

Injection current of 0.5 µA. We find Tc = 1.54 K with the non-local resistance baseline

jumping from 127.6 Ω to 122 Ω. Tc shift of 5 mK, which is due to spin polarization

difference[66], was observed only with opposite magnetization direction of injector.

Spin current is clearly seen below, above, and at Tc in figure 6.6. The critical field at

T = 1.5 K was found to be Bc,‖ = 0.025 T.

To compare the spin resistance, we offset the 1.6 K data as in figure 6.7. ∆RNL in

the superconducting state is almost identical to that in the normal state. However,
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Figure 6.6 Co-existence of spin current and superconductivity. Non-local
resistance curve with B‖ swept between ±0.03 T at the normal state (1.6 K),
superconducting state (0.05 K), and at 1.5 K with a critical field of Bc = 0.025 T.
Inset: Tc shift for different injector and detector configurations with quasi-static
change of temperature at B‖ = 0. The superconducting transition temperature
depends on the degree of spin polarization[66]. If this is controlled primarily by the
injector, we would expect Tc for the the ↑↓ and ↑↑ states to be equal but different
than for the ↓↓ state, consistent with our observations.
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below Tc, as the field approaches the point when either FM1 and FM2 are in the

negative parallel configuration, the non-local resistance increases (arrows in figure

6.7). The magnitude of the increase grows as the temperature approaches Tc from

below and vanishes above Tc. This effect may come from the interaction between

Cooper pairs and magnetic domains[62, 61].

Figure 6.7 Co-existence of spin current and superconductivity. Non-local
resistance at various temperatures below and above Tc and at at 1.6 K, after
removing the offset due to the superconducting transition. ∆RNL does not change
with temperature either below or above Tc, which is inconsistent with the
theoretical predictions of several orders of magnitude change below Tc based on the
quasiparticle picture. In addition, arrows point out a localized increase of RNL
below Tc when FM1 and FM2 are in the negative parallel configuration. The effect
increases as the temperature approaches Tc from below and disappears after the
transition. Every 10th data point shown for clarity.
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The almost identical spin resistance below and above Tc is inconsistent with theo-

retical predictions based on the quasiparticle picture[82] which suggest a temperature

dependent enhancement of spin resistance by the factor of 1/2f0(∆) at the supercon-

ducting state, where ∆ is the superconducting gap and f0 is the Fermi distribution

function[82, 73, 11]. The spin signal in superconducting state was calculated as [82]

Rs = Vs/I = 1
2f0(∆)P

2
JRNe

−L/λN (6.1)

The magnitude of the enhancement was predicted to be several orders of magnitude

above the normal state[82, 73, 11].

6.3.2 Non-local Spin Signal Baseline Jump as Evidence of

Superconductivity

Experimentally in quasi-one-dimensional metal wire the baseline of non-local resis-

tance always exists. One of the origins of the baseline is non-uniform spin injec-

tion at FM/I/N interface due to the non-uniform thickness of tunnel barrier or pin-

holes(leakage current) [54]. Such a non-uniform spin injection leads to an electric

field between injector and detector[54]. Therefore, for non-local resistance measure-

ment as in figure 6.6 in the manuscript, electric field also exists between injector and

detector to generate drift current which contributes to non-local voltage baseline. Be-

low Tc, drift current becomes supercurrent, the corresponding voltage contribution to

baseline also jumps to 0. (This is also a signature of existence of drift current in non-

local measurement to referee’s issue 4). According to BCS theory, in superconducting

state, all the electrons should behave as a whole. Therefore the jump of baseline can

be used as evidence for superconductivity of the Al nano-ring. The jump of baseline

also appears on critical field Bc.

Several factors can convert superconducting Al ring to normal state in authors’

device under vacuum down to 50 mK: 1, current density (j) larger than critical current
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density(jc); 2, Temperature T higher than critical temperature Tc; 3, Magnetic field

B larger than critical field Bc.

1, In our experiment, we used current of 0.125 µA, 0.25µA, 0.5 µA, 1 µA and 2

µA. For this Py/MgO/Al sample, the cross sectional area at the injector is about 0.5

µm2. The current density across the junction is 4 µA/µm2. The thickness of Al is

0.06 µm, width is 0.3 µm, the current density through the NM1 wire is to the order of

100 µA/µm2. For Al nanowire thin film, the critical current density was reported to

be to the order of 1011 A/m2 = 105 µA/µm2 near T = 0 K [75]. Therefore, considering

the Ginsberg-Landau result,

jc = jc(0)(1− T

Tc
)3/2, (6.2)

the current density in our experiment is 2-3 orders of magnitude smaller than the

critical current density of Al.

2, The critical temperature was carefully examined in the inset of figure 6.6. For

our 60 nm thick Al thin film, Tc = 1.54 K is well consistent with previous report [80].

3, The critical field was also examined at 1.5 K, 1.4 K and 1.3 K as shown in

figure 6.8.

In addition, there is one tiny possibility that Aluminum film is normal metal under

Tc. That is to deposit Al film with water cooled substrate through e-gun evaporation

under the 100 mT oxygen pressure such that the AlOx concentration is high and lead

to superconductor-normal metal-insulator conversion [58]. In our manuscript, the

sample in figure 6.6 is prepared by magnetron sputtering in high vacuum chamber

(base pressure 10(−8) Torr). Aluminum layer is DC sputtered with working gas of

high purity Argon. It is unreasonable to assume such high AlOx concentration that

makes Al normal metal below Tc. Even if one argues that there might be very tiny

possibility that Al film is normal metal below Tc, our answer is because of the voltage

jump in figure 6.6, something must be superconducting, but we have not find out any
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Figure 6.8 Critical field at different temperature.

literature that reports Py wire can be superconducting with normal metal electrodes

at 1.5 K.

Spin polarization in Al thin film can shift the Tc from 2.58 K to 2.13 K [66], below

2.13 K in their work, Al film is always superconducting. In our manuscript, we also

observed Tc shift because of different spin polarization. But spin polarization in Al

film can not convert Al from superconductor to normal metal down to 50 mK.

Based on the above analysis, we conclude the Al nano-ring is superconducting.
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6.3.3 Superconducting Spin Signal with Different Injection Current

Non-local spin signal with different injection currents (1 µA, 0.5 µA) was also mea-

sured. Similar baseline jumping was found when temperature was below TC as shown

in figure 6.9 and figure 6.10. Spin resistances were almost the same with different

injection current, either above or below TC . At 1.5 K, the critical field is higher for

smaller injection current, which further prove the baseline jump is due to supercon-

ducting transition.

Figure 6.9 Non-local resistance with injection current of 1 µA at temperature from
50 mK to 4.2 K.

The clear non-local resistance comparison for 0.5 µA, 1 µA and 2 are shown

in figure 6.11, figure 6.12 and figure 6.13. For 2 µA, The asymmetry of non-local
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Figure 6.10 Non-local resistance with injection current of 0.5 µA at temperature
from 50 mK to 4.2 K.

resistance for positive and negative field sweep exist at all temperature from 50 mK

to 1.4 K below TC . Such asymmetry increases gradually with temperature. However,

for 1 µA injection current, the non-local resistance shows a dramatic change below

and above 1.1 K. From 50 mK to 800 mK for 1 µA injection current, the non-local

resistances are almost at the same level with similar profile but a slight increase with

rising temperature. Above 1.1 K, the shape of non-local resistances change a lot with

baseline first drop at 1.1 K then increase at 1.2 K and 1.4 K.

Such phenomena is more obvious for the 0.5 µA low temperature data with another

feature, that is the asymmetry of non-local resistances for positive and negative field

scan totally disappears between 50 mK to 800 mK. Such asymmetry only exist above
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1.1 K. Please note that there is an equipment field offset for the 0 magnetic field.

Such phenomena suggest that the state of Aluminum spacer below 800 mK and

above 1.1 K are different even though it is still in superconducting state. The relevant

spin transport behavior is also different. The physics origin is not clear. For bulk

aluminum, the critical temperature is about 1.17 K. For aluminum thin film in which

electrons are confined in two dimensions, TC is higher than that in bulk aluminum.

We suggest, maybe there is a phase change at temperature TC1 around 1.1 K in

aluminum thin film, such that below TC1, spin singlet correlation dominates, while

above TC1, spin triplet correlation also exists. Such supposition needs more theoretical

and experimental work to confirm.

Figure 6.11 Non-local resistance with injection current of 2 µA at various
temperature below TC .
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Figure 6.12 Non-local resistance with injection current of 1 µA at various
temperature below TC .

The co-existence of superconductivity and spin current in our device could be

direct evidence of spin supercurrents from spin triplet Cooper pairs, which were under

experimental and theoretical investigation recently[62]. In our work, below Tc, in the

injection region, it is actually a lateral Josephson junction [12] with Al/I/FM1/I/Al

structure with FM1 length of < 4µm. Therefore, across the first junction, the the

long range triplet components with spin projection ±1 are generated in FM1 due

to SO coupling [12]. In FM1, the long range triplet components propagate to the

cross-section on the left of the ring and penetrate into Aluminum.

Because we continue to observe spin current in the superconducting state, we sug-

gest that, similar to superfluid 3He, the spin triplet states |↑↑〉, |↓↓〉 and 1√
2(|↑↓〉 +
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Figure 6.13 Non-local resistance with injection current of 0.5 µA at various
temperature below TC .

|↓↑〉), among which |↑↑〉 and |↓↓〉 have non-zero spin and therefore can also cause a

spin current, may also exist in thin films of Al with direct spin injection from a FM,

even though Al is traditionally categorized as a type I superconductor in which only

spin singlet Cooper pairs exist[92, 10, 77]. Al is type one superconductor, such spin-

triplet states |↑↑〉, |↓↓〉 are not stable, therefore, they decline in two directions at the

injector region and detected by the detector FM2 in the nonlocal spin signal. Consis-

tent with this supposition, recent experimental work on spin pumping into supercon-

ductors has shown evidence of triplet spin supercurrent and not quasiparticles[52].

For a clear understanding of the spin triplet components transport and relaxation

behavior in type I, more theoretical and experimental work is needed.
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Chapter 7

Conclusion

To conclude, we experimentally observed simultaneous h/e oscillation and Hanle spin

precession in the NLSV interferometer above Tc for an Al ring spacer. Because the

non-adiabatic condition is satisfied at low fields when the time for an electron to

transit the ring is shorter than the period of Larmor precession, our measurement is

an experimental observation of AA’s non-adiabatic geometric phase and not an AB

phase measurement. In addition, we observed the co-existence of spin current and

superconductivity. The identical spin resistance above and below Tc is inconsistent

with predictions from quasiparticle theories.With consideration of Lateral Josephson

Junction at the injection region, long range triplet components with spin projection

of ±1 formed in the short Py injector. Such long range triplet components in Py

could propagate to the injector junction and spread into Al. Since Al is conventional

superconductor, the triplet components might not be stable and may decay in two

directions. As a result, we suggest the superconducting spin current may come from

spin triplet Cooper pairs.
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